铄思百检测

DETECTION OF TECHNICAL SOUSEPAD

透射电子显微镜(TEM-EDS)扫描电子显微镜(FESEM-EDS)球差电镜激光共聚焦显微镜(LSCM)原子力显微镜(AFM)电子探针仪(EPMA)金相显微镜电子背散射衍射仪(EBSD)台阶仪,膜厚仪,探针接触式轮廓仪,3D轮廓仪工业CT白光干涉仪(非接触式3D表面轮廓仪)电镜测试FIB制样离子减薄制样冷冻超薄切片制样树脂包埋制样(生物制样)液氮脆断制样金网钼网铜网超薄碳膜微栅制样电镜制样X射线光电子能谱分析仪(XPS)紫外光电子能谱(UPS)俄歇电子能谱(AES)X射线衍射仪(XRD)X射线散射仪SAXS/WAXSX射线残余应力分析仪X射线荧光光谱分析仪(XRF)电感耦合等离子体光谱仪(ICP-OES)紫外可见反射仪(DRS)拉曼光谱(RAMAN)紫外-可见分光光度计(UV)圆二色谱(CD)傅里叶变换红外光谱分析仪(FTIR)吡啶红外(DRIFTS)单晶衍射仪穆斯堡尔光谱仪稳态瞬态荧光光谱分析仪(PL)原子吸收分光光度计原子荧光光度计(AFS)三维荧光 /荧光分光光度计红外热成像仪雾度仪旋光仪椭偏仪光谱测试电感耦合等离子体质谱仪(ICP-MS)电喷雾离子化质谱仪(ESI-MS)顶空-固相微萃取气质联用仪(HS -SPME -GC -MS)二次离子质谱(SIMS)基质辅助激光解吸电离飞行时间质谱仪(MALDI-TOF)裂解气质联用仪(PY-GC-MS)气质联用仪(GC-MS)同位素质谱仪液质联用仪(LC-MS)质谱测试差示扫描量热仪(DSC)热重分析仪(TGA)热分析联用仪(DSC-TGA)静态/动态热机械分析仪(TMA/DMA)热重红外联用仪(TG-IR)热重红外质谱联用仪(TG-IR-MS)热重红外气相质谱联用(TG-IR-GC-MS)红外热成像仪激光导热仪锥形量热仪(CONE)热谱测试电子顺磁共振波谱仪(EPR、ESR)固体核磁共振仪(NMR)液体核磁共振仪(NMR)微波网络矢量分析仪/矢量网络分析仪核磁顺磁波谱测试比表面及孔径分析仪(BET)表面张力仪(界面张力仪)高压吸附仪化学吸附仪(TPD TPR)接触角测量仪纳米压痕仪压汞仪(MIP)表界面物性测试气相色谱仪(GC)高效液相色谱仪(HPLC)离子色谱仪(IC)凝胶色谱仪(GPC)液相色谱(LC)色谱测试电导率仪电化学工作站腐蚀测试仪介电常数测定仪卡尔费休水分测定仪自动电位滴定仪电化学仪器测试Zeta电位仪工业分析激光粒度仪流变仪密度测定仪纳米粒度仪邵氏 维氏 洛氏硬度计有机卤素分析仪(F,Cl,Br,I,At,Ts)有机元素分析仪(EA)粘度计振动样品磁强计(VSM)土壤分析测试植物分析测试其他测试同步辐射GIWAXS GISAXS同步辐射XRD,PDF,SAXS同步辐射吸收谱-高能机时同步辐射吸收谱之软X射线同步辐射吸收谱之硬X射线同步辐射聚焦离子束扫描电镜(FIB-SEM)矿物定量分析系统MLA球差校正透射电子显微镜高端电镜类原位XPS测试原位EBSD(in situ -EBSD)原位红外原位扫描电子显微镜(in-situ-SEM)原位透射电子显微镜高端原位测试飞行时间二次离子质谱仪(TOF-SIMS)辉光放电光谱(GD-OES MS)三维原子探针(APT)高端质谱类Micro/Nano /工业CT飞秒瞬态吸收光谱仪(fs-TAS)扫描隧道显微镜深能级瞬态谱仪正电子湮灭寿命谱仪其他XPS数据分析XRD全岩黏土分析表面成分分析技术-XPS测试分析常规XRD数据分析成分指纹分析技术-红外测试分析二维红外光谱技术红外(IR)数据分析拉曼数据分析三维荧光数据分析圆二色谱(CD)数据分析成分含量分析EPR/ESR数据分析VSM数据分析电化学数据分析矢量网络数据分析电磁分析CT数据分析X射线吸收精细结构普(XAFS)数据分析穆斯堡尔谱数据分析小角散射(SAXS/WAXS)数据分析高端测试分析固体核磁数据分析液体核磁(NMR)测试+分析一体化液体核磁(NMR)数据分析化学结构分析EBSD数据分析TEM数据分析单晶XRD数据分析晶体结构确证技术-XRD精修XRD定性定量分析晶体结构分析BET数据分析其它数据分析需求热分析数据处理数据分析作图其他数据分析常规理化-水样常规理化-土样/沉积物常规理化-气体常规理化-植物/蔬果/农作物常规理化-食品常规理化-肥料/饲料常规理化-岩矿常规理化-垃圾常规理化-职业卫生常规理化-其它常规理化项目纤维素、半纤维素、木质素含量bcr形态顺序提取/tessier五步提取法土壤水体抗生素微塑料微生物磷脂脂肪酸(PLFA)非标理化-其它非标理化项目稳定同位素放射性同位素同位素-其它金属同位素同位素多糖的单糖组成测定可溶性寡糖定量土壤氨基糖多糖全套分析多糖甲基化植物糖化学-常规指标糖化学液质联用LCMS高效液相色谱HPLC气相色谱GC气质联用GCMS全二维气质GC×GC-MS气相色谱-离子迁移谱联用仪(GC-IMS)液相色谱-原子荧光联用(LC-AFS)制备型HPLC色谱质谱数据分析液相色谱-电感耦合等离子体质谱(LC-ICPMS)色谱质谱DOM(FT- ICR- MS)水质NOM(LC-OCD-OND)DOM(FT-ICR-MS)数据分析环境高端电池产品整体解决方案正极颗粒表面微观形貌正极颗粒物截面形貌与元素三元正极颗粒循环前后晶界裂纹正极颗粒掺杂元素分布正极颗粒截面元素分布和晶格表征正极极片原位晶相分析正极极片截面元素分布和晶格表征正极表面CEI膜测试方法XPS正极极片截面微观形貌观察和元素分布正极极片CEI膜成分分析与厚度测定正极极片介电常数正极极片浸润性正极极片包覆层观察正极极片杂质含量测定正极极片氧空位测定负极颗粒表面微观形貌观察和元素分布负极颗粒截面微观形貌观察和元素分布石墨类型判定负极颗粒粒径分析负极极片孔洞分析负极颗粒包覆层观察负极颗粒羟基含量测定负极极片包覆层观察负极表面SEI膜分析XPS法负极极片SEI膜成分分析与厚度测定负极极片截面微观形貌观察和元素分布负极极片石墨碳和无定型碳比例隔膜表面微观形貌观察隔膜循环前后孔径变化质子交换膜形貌(厚度)观察 CP+SEM质子交换膜杂质元素电池循环后鼓包气电池循环后爆炸气锂电池极片和集流体间的粘结强度三元正极材料NCM比例燃料电池-整体解决方案电池产品-隔膜电池产品-优势项目正极材料-PH值正极材料-比表面积正极材料-磁性异物正极材料-化学成分正极材料-晶体结构正极材料-粒径分布正极材料-首次放电比容量及首次库伦效率正极材料-水分含量正极材料-松装密度正极材料-未知物分析正极材料-形貌,厚度与结构正极材料-压实密度正极材料-振实密度电池产品-正极材料负极材料-PH值负极材料-比表面积负极材料-层间距 石墨化度负极材料成分分析负极材料-磁性异物负极材料-粉末压实密度负极材料-固定碳含量负极材料-化学成分负极材料-粒径分布负极材料-石墨鉴定负极材料-水分负极材料-限用物质含量负极材料-形貌与结构负极材料-阴离子的测定负极材料-有机物含量负极材料-真密度负极材料-振实密度负极颗粒-石墨取向性(OI值)首次放电比容量及首次库伦效率电池产品-负极材料电解液-电导率电解液-化学元素含量电解液-密度电解液-水分含量电解液-未知物分析电解液-游离酸(HF含量)电池产品-电解液电池产品-隔膜电池产品-隔膜
设为首页 | 收藏本站
活动价 ¥160.00
接触角测量仪
----------------------------------------------
仪器型号   Dataphysics OCA20

服务周期   收到样品后平均3-5工作日完成


接触角/表面张力测量仪

项目简介


测试内容包括:静态接触角、动态接触角(视频拍摄、前进/后退角、滚动角)、 /界面张力、固体表面自由能、粘附力等。1. XPS可以做的项目:常规全谱窄谱测试、俄歇谱、价带谱、深度溅射、MAPPING、角分辨


样品要求


1. 块状样品/薄膜测一次要求尺寸大于1cm*1cm 尽量平整,要平行测试请对应提供样品数;

2. 粉末样品常需要压片后测试,测量接触角时可以直接测试,压片测试需要提供100mg以上(或体积1ml以上);粉末直接测试不少于200mg;表界面张力每种液体样品需要50 mL,太少可与项目经理沟通确认,固体样品需要可以加热融化;

3. 纤维测试长度不少于30cm

4. 测接触角常规介质是水,如需其它试剂请自行提供,至少2ml


结果展示



1. 静态接触角:带标注接触角图片(以下仅为示例,具体以实际仪器测试结果为准)








2. 动态接触角:按需提供视频和截图数据,前进角/后退角/滚动角提供测试数值;

3. /界面张力提供测试数值或软件截图;

4. 固体表面能提供测试数值或软件截图。


常见问题


1. 接触角相关定义

静态接触角:当液体在固体表面达到平衡时,气液的界线与液固的界线之间的夹角称为接触角,此时为静态接触角。

动态接触角:一般是对于疏水材料而言。如果测量时,液滴的三相界面前沿正处于移动状态,那么这样测量得到的接触角值称为动态接触角。

前进/后退角:若表面是粗糙的或不均匀的,向液滴加入一点液体只会使液滴变高,周界不动,从而使接触角变大,此时的接触角称为前进接触角,简称前进角,用θA表示。若加入足够多的液体,液滴的周界会突然向前蠕动,此突然运动刚要发生时的角度称为最大前进角。若从液滴中取出少量液体,液滴在周界不移动的情况下变得更平坦。接触角变小,此时的接触角称为后退接触角,简称后退角,用θR表示。当抽走足够多液体,流溢周界前沿会突然收缩。此突然收缩刚要发生时的角度称为最小后退角。前进角往往大于后退角,两者的差值称为滞后角(Δθ=θA-θR),Δθ与液体在固体上的附着力相关,表征液滴在固体表面滚动的难易程度。接触角的滞后使液滴能稳定在斜面上,这一事实证明,接触角滞后的原因是由于液滴的前沿存在着能垒。

滚动角:滚动角用来描述液滴在固体表面的状态。当一滴水放置在固体倾斜表面而达到一种滚动前的临界状态时,固体表面倾斜的角度就是滚动角(α)。另一种表述为:固-液界面扩展后测量的接触角前进角和回缩后的测量值后退角存在差别,前进角往往大于后退角,两者的差值叫做滚动角,滚动角的大小也代表了一个固体表面的接触角滞后现象。观察到的静态接触角可能位于由前移和后移接触角所限定范围θAθθR内的任意位置。滚动角与滞后角息息相关,但是不完全相等。

表面张力:由于液相和气相的密度差异,液体的表面层中的分子,受到了一个指向液相内部并垂直于界面的引力,使得液体表面就如张紧的弹性薄膜,在这张薄膜上存在着收缩张力,使液体表面有收缩到最小的趋势。单位长度上的收缩张力称为表面张力。

界面张力:高速离心法测试适用于原油类样品,可以测试出超低界面张力。

表面自由能:表面能也叫表面自由能,液体表面能可以直接通过仪器设备测得,而固体表面能和固-液界面能只能通过其他方法间接计算获得。

https://v.youku.com/v_show/id_XNjQ1NjgxNzQ4.html


2. 粉末样品如何测试?

2.1. 压片制备成类薄膜样品,按照薄膜样品测试。

测试中影响最大的因素就是测试面是否平整,一般用红外的压片机压片,样品有时出现粘接的压片机模具的表面,取下来时导致测试面不平整,可以在测试面垫加称量纸就行压片。

2.2. 直接测试(Washburn法)

Washburn法用于测定多孔物质的接触角和表面自由能例如块状粉末或者染料,可吸收物质,如纸和布料。固体粉体间的空隙相当于一束毛细管,当把管子插入待测液时,由于毛细作用液体能自发渗透进入到粉体柱中。毛细作用取决于液体的表面张力和固体的接触角,因此通过测定已知表面张力液体在粉体柱中的透过情况就可以得到有关该液体对粉体的接触角。本身也有不足之处,即粉体柱的等效毛细管半径与粒子大小、形状和填装紧密程度有关,所得曲线线性一般不理想。要想用此方法得到相对准确的结果就需要每次实验粉末样品和装柱方法、粉末紧密程度必须相同;另一方面,当液体的重力相对于Laplace压力差不能被忽略时,就会带来比较大的误差。具体可参考KRUSS官网介绍


3. 纤维样品如何测试接触角

纤维类样品的测试方法:传统的Wilhemy Plate方法(也称为吊片法)被用来测量液体的表面张力:当一块/片规则的金属薄板/片,在经过表面粗糙化处理后,被伸入到液体相时,它受到液体表面张力对其施加的作用力F的作用,后者可以通过称量确定。这里γ为液体的表面张力(待测量),l为液体润湿金属薄板的总周长(可以通过测量已知表面张力的液体确定或直接通过对薄板几何尺寸的测量经计算获得),θ是液体在薄板表面的接触角值。测量时,假设接触角值为零,可以通过获得的F值由计算出γ值,通过测量获得的作用力F,在已知液体的表面张力值γ和液体润湿总周长l时,可以计算得到接触角值θ

4. 接触角和液体体积大小有关系吗?

理论上没有,现实中存在微弱关系。随着液滴体积的增大,重力对液滴形状的影响也越明显,使得液滴偏离球形的程度越来越显著,但这一切并不应该对液滴在固体表面的接触角自动产生影响。从热力学的角度来看,接触角的值取决于液体的表面张力、固体的表面自由能、液体/固体之间的相互作用(液/-界面张力)。在一定的条件(温度、压力、湿度、气氛等)下,前面提及的三个量是一定的,所以接触角的值也应该是一定的。但由于表面的不完美性,即使在指定的条件下,(所谓的静态)接触角的值往往也可以在一范围内变化,而体积不同的液滴可能展现这一范围内不同的值,使得测量结果发生细微变化。至于体积不同的液滴是否会有一定的倾向(比如体积大的倾向于拥有这一范围数值较大的接触角值),这一点目前还缺乏研究。一般情况下,测试接触角的液滴体积是2-10 μL,若对液滴体积有其他要求,可查阅文献资料进行确定。

参考文献:(1) Acta Agriculturae Zhejiangensis 2019, 31(6): 986 -995.
(2) Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021, 619, 126503.
(3) Journal of Colloid Interface Science 1993, 155, 379-385.


5. 如何衡量/检测接触角测量的准确性?

测量都是建立在某一模型的基础上,测量的准确性首先取决于采用的模型在多大程度上与实际被测量体系相符合:符合程度越高,测量的准确性也就越高。反之,即使测量的重复性再好,其数值的准确性(与真实数值的偏差)也不可能得到保证。

视频光学法测量接触角的一个默认的前提(中心轴对称性)和必要的模型假设(液滴或液面轮廓走向函数)。采用的液滴或液面轮廓走向函数的模型与真实情况的相符合性在很大程度上直接决定了最终测量得到的接触角的准确性。


6. 表面张力和界面张力有何不同

液体的表面张力是在空气中测得的,而界面张力则是两种不互溶的液体(例如水和油)之间的张力,两种互溶的液体之间没有界面张力。


7. 表面张力的测试方法主要有哪些?

7.1 挂环法(Du Nouy Ring method:这可能是测量表面/界面张力的最经典方法,文献上报道的许多液体的表/界面张力值是用这一方法测得,它甚至可以在很难浸湿的情况下被使用。用一个初始浸在液体的环从液体中拉出一个液体膜(类似肥皂泡),同时测量提高环的高度时所需要施加的力。

7.2 威廉米平板法(Wilhelmy Plate method:也叫做吊片法,这是一种很普遍的测量方法,尤其适用于长时间测量表面张力的测量,测量的量是一块垂直于液面的平板在浸湿过程中所受的力。用这种方法只需要提供足量体积的液体即可,无需提供其他参数。其实也可以用其它几何形状的探针如圆棒,球等来代替平板,测量原理相同,被称为改进威廉米平板法。

7.3 悬滴法:是一种界面形状分析法,基于对一处于力平衡状态的界面形状的分析,是一种光学分析法适用于界面张力和表面张力的测量,也可以在非常高的压力和温度下进行测量,在进行测量时,需要知道两相物质以及它们的密度。


测试提示:


1.可开正规测试发票,附带测试清单。

2.有腐蚀性,毒性,或其他有危害性等特殊样品要事先告知测试人员,测试人员也要告知样品方哪些样品不能测或会对仪器产生损伤,测试后会对样品产生哪些变化;

3.客户需提供详细的样品资料,包括元素,主要成分和详细测试参数及条件。和测试人员充分讨论,商定最终测试条件;

4.测试人员与顾客通过QQ,微信或邮件沟通,出现测试纠纷,邮件或聊天记录将作为重要的仲裁依据;请加QQ和技术人员交流。QQ:82187958。微信:15071040697

5.杜绝测试、解析和合成违反国家相关法律法规的样品,一经发现将追究其法律责任。




在线客服
 
 
 工作时间
周一至周六 :8:00-18:00
 联系方式
客服-黄工:150 7104 0697
客服-刘工:18120219335