铄思百检测

DETECTION OF TECHNICAL SOUSEPAD

透射电子显微镜(TEM-EDS)扫描电子显微镜(FESEM-EDS)球差电镜激光共聚焦显微镜(LSCM)原子力显微镜(AFM)电子探针仪(EPMA)金相显微镜电子背散射衍射仪(EBSD)台阶仪,膜厚仪,探针接触式轮廓仪,3D轮廓仪工业CT白光干涉仪(非接触式3D表面轮廓仪)电镜测试FIB制样离子减薄制样冷冻超薄切片制样树脂包埋制样(生物制样)液氮脆断制样金网钼网铜网超薄碳膜微栅制样电镜制样X射线光电子能谱分析仪(XPS)紫外光电子能谱(UPS)俄歇电子能谱(AES)X射线衍射仪(XRD)X射线散射仪SAXS/WAXSX射线残余应力分析仪X射线荧光光谱分析仪(XRF)电感耦合等离子体光谱仪(ICP-OES)紫外可见反射仪(DRS)拉曼光谱(RAMAN)紫外-可见分光光度计(UV)圆二色谱(CD)傅里叶变换红外光谱分析仪(FTIR)吡啶红外(DRIFTS)单晶衍射仪穆斯堡尔光谱仪稳态瞬态荧光光谱分析仪(PL)原子吸收分光光度计原子荧光光度计(AFS)三维荧光 /荧光分光光度计红外热成像仪雾度仪旋光仪椭偏仪光谱测试电感耦合等离子体质谱仪(ICP-MS)电喷雾离子化质谱仪(ESI-MS)顶空-固相微萃取气质联用仪(HS -SPME -GC -MS)二次离子质谱(SIMS)基质辅助激光解吸电离飞行时间质谱仪(MALDI-TOF)裂解气质联用仪(PY-GC-MS)气质联用仪(GC-MS)同位素质谱仪液质联用仪(LC-MS)质谱测试差示扫描量热仪(DSC)热重分析仪(TGA)热分析联用仪(DSC-TGA)静态/动态热机械分析仪(TMA/DMA)热重红外联用仪(TG-IR)热重红外质谱联用仪(TG-IR-MS)热重红外气相质谱联用(TG-IR-GC-MS)红外热成像仪激光导热仪锥形量热仪(CONE)热谱测试电子顺磁共振波谱仪(EPR、ESR)固体核磁共振仪(NMR)液体核磁共振仪(NMR)微波网络矢量分析仪/矢量网络分析仪核磁顺磁波谱测试比表面及孔径分析仪(BET)表面张力仪(界面张力仪)高压吸附仪化学吸附仪(TPD TPR)接触角测量仪纳米压痕仪压汞仪(MIP)表界面物性测试气相色谱仪(GC)高效液相色谱仪(HPLC)离子色谱仪(IC)凝胶色谱仪(GPC)液相色谱(LC)色谱测试电导率仪电化学工作站腐蚀测试仪介电常数测定仪卡尔费休水分测定仪自动电位滴定仪电化学仪器测试Zeta电位仪工业分析激光粒度仪流变仪密度测定仪纳米粒度仪邵氏 维氏 洛氏硬度计有机卤素分析仪(F,Cl,Br,I,At,Ts)有机元素分析仪(EA)粘度计振动样品磁强计(VSM)土壤分析测试植物分析测试其他测试同步辐射GIWAXS GISAXS同步辐射XRD,PDF,SAXS同步辐射吸收谱-高能机时同步辐射吸收谱之软X射线同步辐射吸收谱之硬X射线同步辐射聚焦离子束扫描电镜(FIB-SEM)矿物定量分析系统MLA球差校正透射电子显微镜高端电镜类原位XPS测试原位EBSD(in situ -EBSD)原位红外原位扫描电子显微镜(in-situ-SEM)原位透射电子显微镜高端原位测试飞行时间二次离子质谱仪(TOF-SIMS)辉光放电光谱(GD-OES MS)三维原子探针(APT)高端质谱类Micro/Nano /工业CT飞秒瞬态吸收光谱仪(fs-TAS)扫描隧道显微镜深能级瞬态谱仪正电子湮灭寿命谱仪其他XPS数据分析XRD全岩黏土分析表面成分分析技术-XPS测试分析常规XRD数据分析成分指纹分析技术-红外测试分析二维红外光谱技术红外(IR)数据分析拉曼数据分析三维荧光数据分析圆二色谱(CD)数据分析成分含量分析EPR/ESR数据分析VSM数据分析电化学数据分析矢量网络数据分析电磁分析CT数据分析X射线吸收精细结构普(XAFS)数据分析穆斯堡尔谱数据分析小角散射(SAXS/WAXS)数据分析高端测试分析固体核磁数据分析液体核磁(NMR)测试+分析一体化液体核磁(NMR)数据分析化学结构分析EBSD数据分析TEM数据分析单晶XRD数据分析晶体结构确证技术-XRD精修XRD定性定量分析晶体结构分析BET数据分析其它数据分析需求热分析数据处理数据分析作图其他数据分析常规理化-水样常规理化-土样/沉积物常规理化-气体常规理化-植物/蔬果/农作物常规理化-食品常规理化-肥料/饲料常规理化-岩矿常规理化-垃圾常规理化-职业卫生常规理化-其它常规理化项目纤维素、半纤维素、木质素含量bcr形态顺序提取/tessier五步提取法土壤水体抗生素微塑料微生物磷脂脂肪酸(PLFA)非标理化-其它非标理化项目稳定同位素放射性同位素同位素-其它金属同位素同位素多糖的单糖组成测定可溶性寡糖定量土壤氨基糖多糖全套分析多糖甲基化植物糖化学-常规指标糖化学液质联用LCMS高效液相色谱HPLC气相色谱GC气质联用GCMS全二维气质GC×GC-MS气相色谱-离子迁移谱联用仪(GC-IMS)液相色谱-原子荧光联用(LC-AFS)制备型HPLC色谱质谱数据分析液相色谱-电感耦合等离子体质谱(LC-ICPMS)色谱质谱DOM(FT- ICR- MS)水质NOM(LC-OCD-OND)DOM(FT-ICR-MS)数据分析环境高端电池产品整体解决方案正极颗粒表面微观形貌正极颗粒物截面形貌与元素三元正极颗粒循环前后晶界裂纹正极颗粒掺杂元素分布正极颗粒截面元素分布和晶格表征正极极片原位晶相分析正极极片截面元素分布和晶格表征正极表面CEI膜测试方法XPS正极极片截面微观形貌观察和元素分布正极极片CEI膜成分分析与厚度测定正极极片介电常数正极极片浸润性正极极片包覆层观察正极极片杂质含量测定正极极片氧空位测定负极颗粒表面微观形貌观察和元素分布负极颗粒截面微观形貌观察和元素分布石墨类型判定负极颗粒粒径分析负极极片孔洞分析负极颗粒包覆层观察负极颗粒羟基含量测定负极极片包覆层观察负极表面SEI膜分析XPS法负极极片SEI膜成分分析与厚度测定负极极片截面微观形貌观察和元素分布负极极片石墨碳和无定型碳比例隔膜表面微观形貌观察隔膜循环前后孔径变化质子交换膜形貌(厚度)观察 CP+SEM质子交换膜杂质元素电池循环后鼓包气电池循环后爆炸气锂电池极片和集流体间的粘结强度三元正极材料NCM比例燃料电池-整体解决方案电池产品-隔膜电池产品-优势项目正极材料-PH值正极材料-比表面积正极材料-磁性异物正极材料-化学成分正极材料-晶体结构正极材料-粒径分布正极材料-首次放电比容量及首次库伦效率正极材料-水分含量正极材料-松装密度正极材料-未知物分析正极材料-形貌,厚度与结构正极材料-压实密度正极材料-振实密度电池产品-正极材料负极材料-PH值负极材料-比表面积负极材料-层间距 石墨化度负极材料成分分析负极材料-磁性异物负极材料-粉末压实密度负极材料-固定碳含量负极材料-化学成分负极材料-粒径分布负极材料-石墨鉴定负极材料-水分负极材料-限用物质含量负极材料-形貌与结构负极材料-阴离子的测定负极材料-有机物含量负极材料-真密度负极材料-振实密度负极颗粒-石墨取向性(OI值)首次放电比容量及首次库伦效率电池产品-负极材料电解液-电导率电解液-化学元素含量电解液-密度电解液-水分含量电解液-未知物分析电解液-游离酸(HF含量)电池产品-电解液电池产品-隔膜电池产品-隔膜
设为首页 | 收藏本站
预约详情

稳定同位素

 
价格
0.00
预约详情

稳定同位素

设备型号


LC-Isolink-IRMSMAT253)、MAT253Gas Bench


样品准备须知!!!


如果您的样品需要低温寄送,4℃左右可用冰袋寄送(冰袋需自备),-20℃-80℃请干冰寄送;

1.检测结果默认不重复,无资质,若有此需求可与铄思百工作人员沟通。

2.需要测试X中的Y同位素,请务必提供X的含量(例:需测X(硝酸根)中的Y(氮)同位素,需要提供X(硝酸根)的含量)。含量高低与测试质量息息相关,太高损害仪器,太低达不到检测限。如果是加标样品,请详细描述加标情况

3.稳定同位素检测周期一般为样品接收后的10-15个工作日,若样品较多,具体实验周期及送样时间请与工程师沟通确认,谢谢!

4.交付内容可见报告结果展示。

6.请您务必注意回收问题,谨慎选择是否回收



样品测试填写要求注意事项


1.样品数量填写需要测试样品的数量

2.样品编号(名称)请输入该组样品编号,以逗号分隔,例如1,2,3

3.样品来源

详细描述您是如何得到样品的。例:面粉和鲜湿面

4.样品外观

请添加样品图片

5.请详细填写对接单并上传需求


稳定同位素

项目简介


同位素,是指原子序数(质子数)相同而质量数(中子数)不同的元素称为同位素,可分为稳定性同位素和放射性同位素。稳定性同位素是天然存在的技术手段检测不到放射性的一类同位素。

与放射性元素示踪技术相比,稳定性同位素技术无辐照伤害、安全、不受半衰期的影响,可适用于长时间的示踪实验。在实践中,稳定性同位素在自然界中含量较低,一般根据所测样品的同位素比值与相应标准的同位素比值求得样品的同位素比率(即δ值)。

稳定性同位素在土壤、医学、农业、生物、生态、环境等领域得到广泛应用。在研究环境介质中化学物质的迁移、转化及溯源性等方面有广阔的应用前景。

样品要求


1、您编辑好需求后,已经收录的服务项目(指标名称)会直接出现样品要求。

2、如果在官网编辑需求后,系统上不能获得您想测试的指标的样品要求,您可以联系对应工程师获取具体样品要求。

3、需要测试X中的Y同位素,需要您提供X的含量(例:需测X(硝酸根)中的Y(氮)同位素,需要提供X(硝酸根)的含量)。含量高低与测试质量息息相关,太高损害仪器,太低达不到检测限。同位素实验室提供的浓度值仅用于实验室确认上机样品量,如果您需要准确的浓度值,需要额外下单并且提前说明备注。

结果展示


数据形式见下(可联系对接人员索要完整结果内容):


常见问题


1. 为什么需要知道样品的丰度?

∶①同位素丰度:一种元素的混合物中,某特定同位素的原子数与该元素的总原子数之比值。常以原子百分数表示。例如,水中氢由氕、氘两种原子组成,天然水中的氘同位素浓度为0.015%,表示氘原子数在整个氢中占0.015%,氕原子数则占99.985%

测试同位素样品来源:一般来源有两个,自制样和天然样。

不同来源样品差异:天然样和标准品的差异不会特别大,所以预处理后直接进样没有问题;自制样一般是通过实验室方法制得,与标准品的差别可能会非常大;如果预处理后直接进样会对仪器造成很大冲击,并且对后面的待测样品产生持续的影响。因此需要知道待测自制样的丰度(也可以告知多少的样品加了多少的标品,实验室可进行换算),实验室可以对样品进行类似稀释操作后进样,尽量减小对仪器的影响。

2. 为什么测试同位素需要测试浓度。如测试硝酸根里的N同位素需要知道硝酸根浓度,测试气体中氮气的N同位素需要知道氮气浓度?

答:以测试硝酸根里的N同位素为例,如果硝酸根浓度太低,相应的N的含量也会很低,如果此时测试N同位素,则会有测不出的风险,所以样品要求里对N的浓度是有要求的。您可以自己提前测试硝酸根浓度,告知对接老师;如果您无法提供浓度,也可以由实验室为您测试,需要加收一定的费用。

3. 什么是同位素比值和δ值?

答:同位素比值R为某一元素的重同位素丰度与轻同位素丰度之比,例如DH13C/12C34S/32S等,由于轻元素在自然界中轻同位素的相对丰度很高,而重同位素的相对丰度都很低,R值就很低且很冗长繁琐不便于比较,故在实际工作中采用了样品的δ值来表示样品的同位素成分。样品(sq)的同位素比值Rsq与一标准物质(st)的同位素比值(Rst)比较,比较结果称为样品的δ值,其定义为:

δ( ‰
) = ( Rsq/Rst-1 ) ×1000

即样品的同位素比值相对于标准物质同位素比值的千分差。

4. 为什么δ值有正值有负值?

答:为便于应用,δ值一律用千分数表示。δ=0,表示样品的同位素比值等于标样的同位素比值;反之,δ>0δ<0,则分别表示前者大于后者的千分数和前者小于后者的千分数。


测试提示:


1.可开正规测试发票,附带测试清单。

2.有腐蚀性,毒性,或其他有危害性等特殊样品要事先告知测试人员,测试人员也要告知样品方哪些样品不能测或会对仪器产生损伤,测试后会对样品产生哪些变化;

3.客户需提供详细的样品资料,包括元素,主要成分和详细测试参数及条件。和测试人员充分讨论,商定最终测试条件;

4.测试人员与顾客通过QQ,微信或邮件沟通,出现测试纠纷,邮件或聊天记录将作为重要的仲裁依据;请加QQ和技术人员交流。QQ:82187958。微信:15071040697

5.杜绝测试、解析和合成违反国家相关法律法规的样品,一经发现将追究其法律责任。



在线客服
 
 
 工作时间
周一至周六 :8:00-18:00
 联系方式
客服-黄工:150 7104 0697
客服-刘工:18120219335